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ABSTRACT

These notes provide a detailed derivation of the equations for computing meridian distance
on an ellipsoid of revolution given ellipsoid parameters and latitude. Computation of
meridian distance is a requirement for geodetic calculations on the ellipsoid, in particular,
computations to do with conversion of geodetic coordinates ¢, A (latitude, longitude) to
Universal Transverse Mercator (UTM) projection coordinates F,N (East,North) that are
used in Australia for survey coordination. The "opposite" transformation, E,N to ¢, A
requires latitude given meridian distance and these note show how series equations for
meridian distances are "reversed" to give series equations for latitude. The derivation of
equations follow methods set out in Lehrbuch Der Geoddsie (Baeschlin, 1948), Handbuch
der Vermessungskunde (Jordan/Eggert/Kneissl, 1958), Geometric Geodesy (Rapp, 1982)
and Geodesy and Map Projections (Lauf, 1983) and some of the formula derived are used
in the Geocentric Datum of Australia Technical Manual (ICSM, 2002) — an on-line
reference manual available from Geoscience Australia. An understanding of the methods
introduced in the following pages, in particular the solution of elliptic integrals by series
expansion and reversion of a series, will give the student an insight into other geodetic
calculations.

MATLAB functions for computing (i) meridian distance given latitude (function mdist.m)

and (ii) latitude given meridian distance (function latitude.m) are also given.

Meridian Distance.doc 1



INTRODUCTION

For an ellipsoid defined by the parameter pairs (a, f), semi-major axis and flattening or
(a, €2> , semi-major axis and first-eccentricity squared or (a,b), semi-major and semi-minor
axes, let m be the length of an arc of the meridian from the equator to a point in latitude

¢ then
dm = pdo (1)

where p is the radius of curvature in the meridian plane and

B a(1—62> _a(1—62>
o (1 — €” sin’ (b)f ow? @

(S

where the first-eccentricity squared e’ and W are

L A} S

a

f=2t (3)

Q

W= (1 — ¢’ sin’ gb)
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Alternatively, the radius of curvature in the meridian plane is also given by

2
a C

p = Fia—y 4
b (1 + ¢’? cos® ¢)2 v @

where the polar radius ¢, the second-eccentricity squared e’> and V are

a a
C = — =
bo1—f
/2_a2_b2_f<2_f) (5)

Substituting the first group of equations [equations (2) and (3)] into equation (1) lead to
series formula for the meridian distance m as a function of latitude ¢ and powers of e”.

Substituting the second group, [(4) and (5)] lead to series formula for m as a function of ¢

. —b . . .
and powers of another ellipsoid constant n = a e Series formula for m involving powers
a

of €* are more commonly found in the geodetic literature but as will be shown in the
following sections, series formula for m involving powers of n are more compact and give

identical results at the level of the 5th decimal place of a metre. A further advantage of
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the series formula involving powers of n, is that they are easier to "reverse', i.e., given m as
a function of latitude ¢ and powers of n develop a series formula (by reversion of a series)
that gives ¢ as a function m. This is very useful in the conversion of UTM projection

coordinates E,N to geodetic coordinates ¢, \.

MERIDIAN DISTANCE AS A SERIES FORMULA IN POWERS OF e®

Using equations (1), (2) and (3) the meridian distance is given by the integral

m = | —a<1—e )dqj:a(l—eQ)f% d¢:a(1—62)f<1—62 SiIlQ)_%CW (6)

0 0 0

This is an elliptic integral of the second kind that cannot be evaluated directly; instead,
. 1 2 . -3, . .
the integrand — = (1 — e’ sin’ <b> is expanded in a series and then evaluated by term-
W

by-term integration.

The integrand % = (1 — e’ sin” qb)_' can be expanded by use of the binomial series

rolee

n=0

x (B
1+z) = Z[ z" (7)
An infinite series where n is a positive integer, 0 is any real number, —1 < x <1 and the

binomial coefficients B’ = [n] are given by

B3:F
n n

In equation (8) the gamma function T satisfies I' (1) =7 with I'(8+1) = 8I'(8) for all

B rg+1)
S T(n+1D)T(B—n+1) ®)

B =0,—1,—2,--- and for integer values of n, I'(n +1) =n! with 0! =1.

In the case where 3 is a positive integer, say k, and —1 < x < 1, the binomial series (7)

can be expressed as the finite sum

k
where the binomial coefficients B" = [n in series (9) are given by
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. [F k!
B =\ == (10)
) nl(k—n)!
3 _%
The binomial coefficients B * :[ n J for the series (7) are given by equation (8) as
s I'(—3%) . .
B = with the following results for n =0,1,2 and 3
"~ nll(—%—n)
3 F _l
n=0 B,? = ) =1
0T (—4)
. 1 3T (—3
n=1 B;iz F( 2) — ZF( 2):_§
NT(—4) 13 2
L, i TR AT (HEDNED 15
P2IT(=3)  2!0(=3) 21T (—3) 8
. i TR (CHEHEDNED 10
3In(=) 31T (- %) 48
3 _%
Inspecting the results above, we can see that the binomial coefficients B, ? = [ n ] are a
sequence of the form
1 3 35 357 3579 357911
" 27247 246 2:-4.6-8  2:4:6-8-10
Using these coefficients gives (Baeschlin 1948, p.48; Jordan/Eggert /Kneissl 1958, p.75;
Rapp 1982, p.26)
%:(1—6251n2¢)7% :1+ge251n2¢+%e4sin4q§+2:5:Zeﬁsin6¢
—3'5.7.9688in8¢—}——3'5.7.9'116105in10¢+... (11)
2-4-6-8 2-4-6-8-10

To simplify this expression, and make the eventual integration easier, the powers of sin ¢

can be expressed in terms of multiple angles using the standard form

o 1 (2n (—1)" 2n 2n 2n
sin™ ¢ =2 | n + ST ” 0 cos(2n —0) ¢ — ] ]cos(2n—2)¢—|— 5 cos(2n —4) ¢
2n 2n
—[ 5 ]cos(2n—6)¢—|—~-(—l)"’ n—1]0082¢}

Using equation (12) and the binomial coefficients B>"

(10) gives
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. 9 1 1
sin“ ¢ = ———cos?2
0 573 0
.4 3 1 1
sin® ¢ = —+—cos4¢p — —cos 2
@ s T3 o 5 @

sin ¢_£—icos6¢+icos4¢—%0052¢

16 32 16
35 1 1 7 7
sin® p = — 4+ —cos 8 ——cos6 +—cos4 ——(:082
¢ 128 128 ¢ 16 ¢ 32 ¢ 16 ¢
. 10 63 1 5 45 15 105
sin =————¢c0s10¢p + — cos8p — ——cos6¢ + — cos4¢p — —— cos 2 13
¢ 256 512 ¢ 256 ¢ 512 ¢ 64 i¢ 256 ¢ (13)

Substituting equations (13) into equation (11) and arranging according to cos2¢ , cos4¢,

etc, we obtain (Baeschlin 1948, p.48; Jordan/Eggert /Kneissl 1958, p.75; Rapp 1982, p.27)

.,)

1
w?

:(1—6281n2¢)2 A— Bcos2¢p + Ccosdep — Dcosbp + E cos8p — F cos10¢ + --- (14)

where the coefficients A, B, C, etc., are

U1 B3 45 175 o 11025 o 43659 i
4 64 256 16384 65536

o B3 151,525 2205 72765 ,
1° 7167 Th12° T2048° T 65536

oo 15,0, 105 ;2205 . 10395 ,
64 256 4096 16384

(15)
D_ ﬁeﬁ n 315 r 31185 SO
512 2048 131072
B 315 o 3465 U
16384 65536
j 693 o0
131072
Substituting equation (14) into equation (6) gives the meridian distance as
¢
= a<1—€2>f{A—BCOSQ¢+CCOS4¢—DCOS6¢+ECOSS¢—FCOSIO¢+"'}d¢
0
. . . sinaxr .
Integrating term-by-term using the standard integral result f cos azr dr = gives the
a

0

meridian distance m from the equator to a point in latitude ¢ as

= a(l—62>{A¢—§sin2¢—|—%sinélqﬁ—%sin6¢+§sin8¢—%sin10¢+~-«} (16)
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where ¢ is in radians and the coefficients A, B, C, etc., are given by equations (15)

For the Geodetic Reference System 1980 (GRS80) ellipsoid
(a = 6378137, f = 1/298.257222101) the coefficients A, B, C, etc., have the numeric values

A = 1.005 052 501 813 087
B = 0.005 063 108 622 224
C = 0.000 010 627 590 263

(17)
= 0.000 000 020 820 379
= 0.000 000 000 039 324
= 0.000 000 000 000 071
Multiplying each of the coefficients in equation (16) by a (1 - 82) and for latitude ¢ in
degrees, meridian distance on the GRS80 ellipsoid can be expressed as
m =111 132.952 546 998 ¢° — 16 038.508 741 268 sin 2¢
+ 16.832 613 327 sin 4¢
— 0.021 984 374 sin 6¢
+ 0.000 031 142 sin 8¢
- 0.000 000 045 sin 10¢ (18)
and the meridian distance at latitude ¢ = 50° = ?—g radians is
my, = 5 540 847.041 560 963 metres (19)

From equation (16), the quadrant distance @, the meridian distance from the equator to

the pole, for the GRS80 ellipsoid is

Q=a(l1—¢€")A(+7)=10001 965.729 229 864 metres (20)

Equation (16) may be simplified by multiplying the coefficients by (1 — 82) and expressing

the meridian distance as

m = a{Ayp — A, sin2¢ + A, sin 4¢ — A sin 6¢ + A sin 8¢p — A, sin10¢ + ---} (21)
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where A :<1—62>A, A, :<1—62>§, A, :(1—62)%, etc., and

175 441

A =l T T ot oha0°
A=l i e )
, :%[e4+%e6+§eg+%em+m] )
35 5 315
A = m[eﬁ +Z(28 +25—6610 —i—]
SZKS£QF&+£éW+M]
”:1§32wm%»
For the GRS80 ellipsoid, the coefficients A, A,, A,, etc., have the numeric values
A, = 0.998 324 298 423 043
A, = 0.002 514 607 124 555
A, = 0.000 002 639 111 298 (23)
A, = 0.000 000 003 446 837
A; = 0.000 000 000 004 883
A, = 0.000 000 000 000 071
Multiplying each of the coefficients in equation (21) by a and for latitude ¢ in degrees,
meridian distance m on the GRSS80 ellipsoid can be expressed as
m =111 132.952 547 005 ¢°— 16 038.508 741 587 sin 2¢
+ 16.832 613 418 sin 4¢
— 0.021 984 397 sin 6¢
+ 0.000 031 145 sin 8¢
- 0.000 000 453 sin 10¢ (24)

and the meridian distance at latitude ¢ = 50° = ?—g radians is

ms, = 5 540 847.041 560 711 metres
From equation (21), the quadrant distance @ on the GRS80 ellipsoid is

Q = a4, (3 7) =10 001 965.729 230 469 metres
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Inspection of equations (18) and (24) for the meridian distance m and the values for the
distances m., and the quadrant distances @ computed from equations (16) and (21) show
that for all practical purposes these equations [(16) and (21)] give identical results at the
5th decimal place of a metre. The differences between the meridian distances m, is

0.000 000 252 metres and the quadrant distances @ is 0.000 000 605 metres .

THE GDA TECHNICAL MANUAL FORMULA FOR MERIDIAN DISTANCE

In the Geocentric Datum of Australia Technical Manual (ICSM 2002) the formula for

meridian distance is given in the form

m = a{B,¢ — B, sin 2¢ + B, sin 4¢ — B; sin 6¢} (25)
where
Bo—l—lcEQ—ieél—ie6
4 64 256
B, :§[62+164+£66)
8 4 128 (26)
15 (. 36]
B, =—|e+2
' 256[6 1°
:ieG
" 3072

This is a contraction of equation (21) and the coefficients B,, B,, B, and B, exclude all

terms involving powers of the eccentricity greater than e’ in the coefficients

A, A,, A, and A;. Equations (25) and (26) are the same formula given in Lauf (1983, p.

36, eq'm 3.55), and using these equations the meridian distance m for the GRS80 ellipsoid

can be expressed as

m =111 132.952 549 403 ¢° — 16 038.508 411 773 sin 2¢
+  16.832 200 893 sin 4¢
- 0.021 800 767 sin 6¢ (27)

The meridian distance on the GRS80 ellipsoid at latitude ¢ = 50° = i—g radians is

my, = 5 540 847.041 967 753 metres

Meridian Distance.doc 8




and the quadrant distance () is

@ =10 001 965.729 446 292 metres

The differences between the meridian distance m,, and the quadrant distance () computed
using equation (25) and the previously computed values using equation (16) are

0.000 41 metres and 0.000 22 metres respectively. We can conclude from this that the
formula for meridian distance given in the GDA Technical Manual will give millimetre

accuracy for latitudes covering Australia.

MERIDIAN DISTANCE AS A SERIES EXPANSION IN POWERS OF n
The German geodesist F.R. Helmert (1880) gave a series formula for meridian distance m
as a function of latitude ¢ and powers of an ellipsoid constant n that requires fewer terms

than the meridian distance formula involving powers of e”.

Using equations (1), (4) and (5), the differentially small meridian distance dm is given by

c
dm = 7 do (28)
With the ellipsoid constant n defined as
_a—=b_ [ (29)
a+b 2—f
the following relationships can be derived
2
C:a_:a[1+"]7 go_Adn g _An (30)
b 1—n (14 n) (1—-n)
Using the last member of equations (30) we may write
2 2
V:=1+¢€"cos’ ¢ = (1—n) +4n2608 ¢
1—mn)
and using the trigonometric relationship cos2¢ = 2cos” ¢ —1
Ve (1—n)* +2ncos2¢ + 2n
(1—n)
_ 1 - (1 +n® + 2n cos 2(;5) (31)

(1—n)
Now we can make use of Fuler’s identities: e'* =cos¢ +ising, e =cos¢—ising in

simplifying equation (31) Note that ¢ is the imaginary unit <i2 = —1) and
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e = 2.718281828... is the base of the natural logarithms. e in Euler's identities should not
be confused with the eccentricity of the ellipsoid. Adding Euler's identities gives
2cos ¢ = e’ + e and replacing ¢ with 2¢ gives 2cos2¢ = e’ 4+ e **. Substituting this

result into equation (31) gives

- (1 +n*+n (eﬂ‘z’ + e*m’))

= ! 5 (1 +n?+ ne 4+ neﬂ:m)

= e )

Now an expression for % in equation (28) can be developed as
- ((1 - n)_2 >_% <1 + ne™’ )7% (1 + pe 2 )*%
=(1- n)3 <1 + ne )7% <1 + peize )*% )

Using equation (32) and the first member of equations (30) in equation (28) gives

dm:a[1+n](1—n)3 <1+n622@> %<1+n6722®) %dQS (33)

1—n

Now [1 + nJ 1—n)P =1+n)1-n)=(1-n) (1 — n2) and equation (33) becomes (Lauf
—n

1983, p. 36, eq'n 3.57)
dm =a(l—n)(1—n*)(1+ne™) " (1+ne ™) " dg (34)

Using the binomial series as previously developed [see equation (11)] we may write

(1+nel2(/))% 1-2 3 g2 4 29 35 nleit® _ 3'5'7n36i6¢
2 2-4 2:4-6
3 5 7 9n46i8¢_3'5'7'9'11n56i10¢+”.
2:4-6-8 2:4-6-8-10

and

<1+nel2¢)% 1— 3 —L2¢+3'5 n2e—ie _ 3 5.7 n3e 19
2 2-4 2 4-6
3 5 7 97’1/4672.8(1)— 3'5 7 9 11n567i10¢
2:4-6-8 2:-4-6-8-10

The product of these two series, after gathering terms, will be a series in terms

(em’ + efm’) = cos2¢, ((2’:4"“7 + 67“@) = cos4g, (em + e%c") = cos6¢ , etc.; each term having
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coefficients involving powers of n. Using this product in equation (34) and simplifying

gives
dm = a(l—n)(l—nQ){1+2n2 —I—ﬁn4 + -
4 64
—2c082¢ §n+§n3 4225 +]
2 16 128

8 32

—2 cos 6¢ 30 +—945 n’ + ]
16 256
315
—n
128
693
—n
256

+2 cos 8¢ —I—]

—zcos10¢[ 5+-~-]+---}d¢

sin azx

Integrating term-by-term using the standard integral result f cos ax dx = gives the

0 a

meridian distance m from the equator to a point in latitude ¢ as

m=a(l— n)(l—nQ){a(@— a, sin 2¢ + a, sin 4¢ — a; sin 6¢ + a, sin 8¢ — a,, sin 10¢ + ---} (35)

where
4 64
3 45 5 525
a, =—m+—n"+—n +--
2 16 128
1(15 , 105 , ]
a4:——n +—n _|_...
218 32 36
1(35 5 945 ] ( )
aGZ__n +—n _|_...
316 256
1(315 , ]
a8 = —|—n +
41128
1693 ]
Opy=—=|—mn +--
51256
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For the GRS80 ellipsoid, the coefficients q,, a,, a,, etc., have the numeric values

a, = 1.000 006 344 535 504
a, = 0.002 518 843 909 281
a, = 0.000 002 643 557 858
a;, = 0.000 000 003 452 645
a;, = 0.000 000 000 004 892
a,, = 0.000 000 000 000 007

Multiplying each of the coefficients in equation (35) by a (1 —n) <1 — n2) and for latitude ¢
in degrees, meridian distance m on the GRS80 ellipsoid can be expressed as
m =111 132.952 547 005 ¢°— 16 038.508 741 594 sin 2¢
+ 16.832 613 428 sin 4¢
— 0.021 984 404 sin 6¢
+ 0.000 031 148 sin 8¢
— 0.000 000 046 sin 10¢ (38)

with the meridian distance at latitude ¢ = 50° = ?—g radians is

ms, = 5 540 847.041 560 969 metres
and the quadrant distance ) on the GRS80 ellipsoid is

Q=a(l—-n)(1-n’)a,($7)=10 001 965.729 230 464 metres

The differences between the meridian distance m,, and the quadrant distance () computed
using equation (35) and the previously computed values using equation (16) are

0.000 000 006 metres and 0.000 000 600 metres respectively. We can conclude from this
that for all practical purposes equations (16), (21) and (35) give identical results at the 5th

decimal place of a metre.
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HELMERT'S FORMULA FOR MERIDIAN DISTANCE

Jordan/Eggert /Kneissl (1958, p.83) in a section titled Helmertsche Formeln zur

Rektifikation des Meridianbogens (Helmert's formula for meridian distance) outlines a
method of derivation attributed to Helmert (1880) that is similar to the derivation in the
a (1 — 62>

e and

previous section. Their starting point (and presumably Helmert's) was p =

2
(1 - €2> = M rather than p = % and dm = %d¢ as above but the end result
(1+n) vV %4
(Jordan/Eggert/Kneissl 1958, eq'n 38, p.83) is similar in form to equation (35) but without
the term —a,, sin10¢ and the coefficients exclude all terms involving powers of n greater

than n'. With these restrictions we give Helmert's formula as (Lauf 1983, p. 36, eq'n 3.55)

m:a(l—n)(l—nQ){boqﬁ—b2 sin 2¢) + b, sin 4¢ — by sin 6¢ + b, sin 8¢p — -+-} (39)
where
bo :1_}_2”2_,_%”44_...
4 64
b2 :§n+§n3+...
2 16
b4 :l En2+m_5n4+...] (40)
208 32
b6 :l §n3+.]
3116
1315 ]
b = —|—n"n +...
*o4l128
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For the GRS80 ellipsoid, the coefficients b,, b,, b,, etc., have the numeric values

b, = 1.000 006 344 535 504

b, = 0.002 518 843 909 226

b, = 0.000 002 643 557 858 (41)
b, = 0.000 000 003 452 629

b, = 0.000 000 000 004 892

Multiplying each of the coefficients in equation (39) by a (1 —n) <1 — n2) and for latitude ¢

in degrees, meridian distance m on the GRS80 ellipsoid can be expressed as

m =111 132.952 547 005 ¢°— 16 038.508 741 245 sin 2¢
+ 16.832 613 428 sin 4¢
- 0.021 984 300 sin 6¢
+ 0.000 031 148 sin 8¢ (42)
Using equation (39), the meridian distance at latitude ¢ = 50° = ?—g radians on the
GRS80 ellipsoid is
my, = 5 540 847.041 561 252 metres

and the quadrant distance @ is

() =10 001 965.729 230 464 metres

The differences between the meridian distance m,, and the quadrant distance () computed
using equation (39) and the previously computed values using equation (16) are

0.000 000 289 metres and 0.000 000 600 metres respectively.
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AN ALTERNATIVE FORM OF HELMERT'S FORMULA

An alternative form of Helmert's formula [equation (39)] can be developed by noting that

(1—n)(1—n2): 112(1—71)(1—712)

()

14+n

Multiplying the coefficients b,, b,, b,, b; and b, by (1— nQ)(l —nQ) gives

m:li {C(@—CQsin2<]§—|—c4sin4<;5—06sin6¢—|—cgsin8¢_...} (43)
n
where
2 ]- 4
€ = +Zn +6—4n +
3[ 1 ]
CQ :5 n—gn —
5(, 1, ]
i — —_— — —_— e 44
gl (a4
35
Cs :4_8< 3 _ )
315, ,
Co = —|n —---
" 512( )

Equation (43) with expressions for the coefficients ¢,, ¢,, ¢, etc., is, except for a slight

change in notation, the same as Rapp (1982, p. 30, eq'n 95) who cites Helmert (1880) and
is essentially the same as Baeschlin (1948, p. 50, eq'n 5.5) and Jordan/Eggert/Kneissl
(1958, p.83-2, eq'ns 38 and 42)

For the GRS80 ellipsoid, the coefficients ¢,, ¢,, ¢,, etc., have the numeric values

¢, = 1.000 000 704 945 408

¢, = 0.002 518 829 704 124

¢, = 0.000 002 643 542 949 (45)
¢, = 0.000 000 003 452 629

¢, = 0.000 000 000 004 892

Multiplying each of the coefficients in equation (43) by N ©_ and for latitude ¢ in

+n

degrees, meridian distance m on the GRS80 ellipsoid can be expressed as

Meridian Distance.doc 15




m =111 132.952 547 005 ¢°— 16 038.508 741 596 sin 2¢
+  16.832 613 428 sin 4¢
- 0.021 984 424 sin 6¢
+ 0.000 031 148 sin 8¢ (46)

Using equation (43), the meridian distance at latitude ¢ = 50° = El)—ﬁ radians on the

GRS80 ellipsoid is

ms, = 5 540 847.041 561 015 metres

and the quadrant distance @ is

@ =10 001 965.729 230 464 metres

The difference between the meridian distances m,, computed using equation (39)
[Helmert's formula] and equation (43) (its alternative form) is 0.000 000 237 metres and
the quadrant distances () are identical. The differences between m,, and () computed
using equation (43) and the previously computed values using equation (16) are

0.000 000 052 metres and 0.000 000 600 metres respectively. We can conclude from this
and other comparisons made in previous sections that (i) for all practical purposes,
equations (16), (21), (35), (39) and (43) give identical results at the 5th decimal place of a
metre and (ii) equations (39) (Helmert's formula) or (43) (the alternative form of Helmert's
formula) are the simplest, having fewer terms in the expressions for the coefficients than

the other three equations that give comparable accuracy.
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LATITUDE FROM HELMERT'S FORMULA BY REVERSION OF A SERIES

Helmert's formula [equation (39)] gives meridian distance m as a function of latitude ¢
and powers of n and this formula (or another involving ¢ and e* developed above) is
necessary for the conversion of ¢, A to UTM projection coordinates F,N. The reverse
operation, F,N to ¢, \ requires a method of computing ¢ given m. This could be done by
a computer program implementing the Newton-Raphson scheme of iteration (described in
a following section), or as it was in pre-computer days, by inverse interpolation of printed
tables of latitudes and meridian distances. An efficient direct formula can be obtained by
"reversing" Helmert's formula using Lagrange's Theorem to give a series formula for ¢ as a
function of an angular quantity o and powers of n; and o, as we shall see, is directly
connected to the meridian distance m. We thus have a direct way of computing ¢ given

m that is extremely useful in map projection computations.

The following pages contain an expanded explanation of the very concise derivation set out
in Lauf (1983); the only text on Geodesy where (to my knowledge) this useful technique

and formula is set down.

Using Helmert's formula [equation (39)] and substituting the value ¢ = ;7 gives a formula

for the quadrant distance () as

9 225 ™
=a(l—n)(l—n’ [1+— ot 4| 4T
Q=a( n)< n) 2" 64n 5 (47)

[The quadrant distance is the length of the meridian arc from the equator to the pole
and the ten-millionth part of this distance was originally intended to have defined the
metre when that unit was introduced. For those interested in the history of geodesy,
The Measure Of All Things (Adler 2002) has a detailed account of the measurement of
the French Arc (an arc of the meridian from Dunkerque, France to Barcelona, Spain
and passing through Paris) by John-Baptiste-Joseph Delambre and Pierre-Francois-
André Méchain in 1792-9 during the French Revolution. The analysis of their
measurements enabled the computation of the dimensions of the earth that lead to the

definitive metre platinum bar of 1799.]
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Also, we can establish two quantities:

(i) @, the mean length of a meridian arc of one radian

G:%Q:a(l—n)(l—ﬁ)[l—l—%n?+26%n4+--- (48)

(i) o, an angular quantity in radians and

(49)

Q3

An expression for ¢ as a function of ¢ and powers of n is obtained by dividing equation

(48) into Helmert's formula [equation (39)] giving

§n+§n3+. Ern?_i_@nz"_i_...
o =¢—{—2—10 ﬁn%ﬁ+% & — o sin 46
+-n' +=n' 4 1+=n’+—"—n"+.
4 64 4 64
35 0 315 4
X o | . et |
—— tsin 6¢ + — sin8p —---  (50)
Bl Yy 2200y 410 e 2By
4 64 4 64

Using a special case of the binomial theorem
I42)' ' =1—z+2"—2" +2* —

the numerator of each coefficient in the equation for o can be written as

—1 2
[1-1—2712 +ﬁn4 +] = 1—[9712 +&n4 +...]+[gn2 +ﬁn4 + ..

4 64 4 64 4 64
9 , 225 , ’
—|—n _I__n _|_... +...
4 64

and expanding the right-hand side and simplifying gives

-1
[1_{_2”2_}_%”44_...] :1_27124_%”4_... (51)
4 64 4 64

Substituting equation (51) into equation (50), multiplying the terms and simplifying gives
the equation for o as (Lauf 1983, p. 37, eq'n 3.67)

a:%:gb—[gn—%ns—---]sin%ﬂ- %n2—£n4—---]sin4¢
35 4 ] : [315 4 ] .
—|— — ... 60p +|—— _ 8p—--- 52
(4871 sin 6¢ 1" sin 8¢ (52)
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If we require the value of ¢ corresponding to a particular value of o, then the series (52)
needs to be reversed. This can be done using Lagrange's Theorem (or Lagrange's

expansion) a proof of which can be found in Carr (1970).

Suppose that
y=z+2zF(y) or z=y—aF(y) (53)

then Lagrange's Theorem states that

2 3 2

. / T d 2 pf T d 3 pf
fW)=f@+aF&f (z)+aa[{F(z)} f (z)]%—gg[{l?(z)} fr)+ -

+xn dn—l
n!dz""

{F @} f'@)] (54)

In our case, comparing the variables in equations (52) and (53), z =0, y=¢ and z =1,
and if we choose f(y) =y then f(z)=2z and f () =1. So, in our case equation (52) can

be expressed as

o=¢—F(¢) (55)
and Lagrange's Theorem gives

B 1d 27, 1 d&° 3 1 d
b=+ F@+ o [{FOY|+ S [{FP|+ -+

{F @}"] (56)

Now, comparing equations (55) and (52) the function F(¢) is

F(¢) — %n_%ng —]Sln2¢_[1_2n2 —£n4 —]Sln4¢
+ §n3 _]51n6¢—[ﬁn4 —]51n8¢—
48 512

and so replacing ¢ with o gives the function F (o) in equation (56) as

F(U):[ﬁn—gn?’—---]sin%r— EnQ—ETﬁ— --]811140
2 16 16 32
+ ﬁng—---]sinGa—[ﬁn‘l—---]sin&f—--- (57)
48 512
Squaring F' (o) gives
{F<( )}2 :[gn2—2—7n4+---]sin220— ﬁng—-“]SiHQO'SiHZLO'
4 16 16
—I—[ﬁrﬁ—-~-]sin205m60+[@n4—---]sin24o—---
16 256
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and expressing powers and products of trigonometric functions as multiple angles using

sin*A =1 —1cos2A and sin Asin B = —{cos (A—B)—cos(A+ B) } gives, after some
simplification
{F(U)}2 = [2 207 n' —---]—[4—57’&3 + ---]cosQa—[gn —ﬂn +---|cosdo
8 512 32 8 16

45 785
+|—n® —---|cos 60 — | ——n" +---|cos 87 + ---
32 012

Differentiating with respect to ¢ and then dividing by 2 gives the 3rd term in equation
(56) as

F(o ) = —n —--+|8in 20 + gn —ﬁn —--+|sindo
4 8
—[1312571 - ] sin 60—1—[%71 — -]sin80+--- (58)

Using similar methods the 4th and 5th terms in equation (56) are

2
é d [{F( )}] —[%n - -]sin?a—f—[%ﬁ—m]sinéhf
+ f—én — -]sinﬁa [%n - -]Sin&r-l—--- (59)
3
2—14%[{}7(0)}4]:— 274771 — ']sin4a—|—[2—27n4—m]sinSa—i—m (60)
o

Substituting equations (57) to (60) into equation (56) and simplifying gives an equation for
¢ as a function of o and powers of n as (Lauf 1983, p. 38, eq'n 3.72)

gbza-l—[ﬁn—gng— ]SmQU—I—[EnQ—§n4+---]sin4a
2 32 16 32
+[En3+ ] 60+[1097 ! --~]sin80—-~- (61)
96 512

where o = % radians and G is given by equation (48). This very useful series now gives a

direct way of computing the latitude given a meridian distance.
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LATITUDE FROM HELMERT'S FORMULA USING NEWTON-RAPHSON
ITERATION

In the preceding section, Helmert's formula was "reversed" using Lagrange's Theorem to
give equation (61), a direct solution for the latitude ¢ given the meridian distance m and
the ellipsoid parameters. As an alternative, a value for ¢ can be computed using the
Newton-Raphson method for the real roots of the equation f(¢)=0 given in the form of

an iterative equation

/(8,)
¢TZ = ¢7L - —,L (62)
+1 f/ (gb")
where n denotes the n” iteration and f(¢) can be obtained from Helmert's formula
[equation (39)] as
f(@)=a@—n)(1—n*){b¢ — b, sin 2¢ + b, sin 4¢ — b; sin 6¢ + b, sin 8p} — m (63)
and the derivative f'(¢)= %{f(qﬁ)} is given by
f(¢)=a(l—n) (1 —n’ ) {b, — 2b, cos 2¢ + 4b, cos 4¢ — 6b; cos 66 + 8b, cos 8¢} (64)

An initial value for ¢ (for n =1) can be computed from ¢, = ™ and the functions f(é)
a

and f'(¢,) evaluated from equations (63) and (64) using ¢,. ¢, (¢ for n =2) can now be

computed from equation (62) and this process repeated to obtain values ¢y, ¢,, .... This

iterative process can be concluded when the difference between ¢, , and ¢, reaches an

acceptably small value.
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MATLAB FUNCTIONS FOR: (i) MERIDIAN DISTANCE USING HELMERT'S
FORMULA, (ii) LATITUDE FROM HELMERT'S FORMULA USING REVERSION OF
A SERIES AND (iii) LATITUDE FROM HELMERT'S FORMULA USING NEWTON-
RAPHSON ITERATION

Three MATLAB functions are given below. The first function mdist.m uses Helmert's
formula [equation (39)] to compute the meridian distance m given the ellipsoid parameters
a (semi-major axis of ellipsoid)and flat (the denominator of the flattening f) and the

latitude lat in the form ddd.mmss, where a latitude of —37°48'33.1234” would be input

into the function as —37.48331234. The function is designed to be run from the
MATLAB command window with output from the function printed in the MATLAB

command window.

The second function latitude.m computes the latitude ¢ given the meridian distance m

and the ellipsoid parameters a (semi-major axis of ellipsoid), flat (the denominator of the
flattening f). The function uses equation (61), the series formula developed by reversing
Helmert's formula, and is designed to be run from the MATLAB command window with

output from the function printed in the MATLAB command window.

The third function latitude2.m computes the latitude ¢ given the meridian distance m and
the ellipsoid parameters a (semi-major axis of ellipsoid), flat (the denominator of the
flattening f). The function uses the Newton-Raphson iterative scheme to compute the
latitude from Helmert's formula [equation (39)] and is designed to be run from the
MATLAB command window with output from the function printed in the MATLAB

command window.
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MATLAB FUNCTION mdist.m

function mdist(a,flat, lat)

% MDIST(A,FLAT,LAT) Function computes the meridian distance on an

% ellipsoid defined by semi-major axis (A) and denominator of flattening

% (FLAT) from the equator to a point having latitude (LAT) in d.mmss format.
% For example: mdist(6378137, 298.257222101, -37.48331234) will compute the
% meridian distance for a point having latitude -37 degrees 48 minutes

% 33.1234 seconds on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101)

% Function: mdist(Q)

% Usage: mdist(a, flat, lat)

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 22 March 2006

%

% Purpose: Function mdist(a,f,lat) will compute the meridian distance on
% an ellipsoid defined by semi-major axis a and flat, the

% denominator of the flattening f where ¥ = 1/flat. Latitude is
% given in d.mmss format.

% Functions required:

% decdeg = dms2deg(dms)

% [D,M,S] = DMS(DecDeg)

%

% Variables: a - semi-major axis of spheroid

% b0,bl,b2, - coefficients

% d2r - degree to radian conversion factor 57.29577951. ..
% n,n2,n3, etc - powers of n

% f - £ = 1/flat is the flattening of ellipsoid

% flat - denominator of flattening of ellipsoid

%

% Remarks: Helmert®s formula for meridian distance is given in

% Lauf, G.B., 1983, Geodesy and Map Projections,

% TAFE Publications Unit, Collingwood, p. 36, eq"n 3.58.

% A derivation can also be found in Deakin, R.E., Meridian
% Distance, Lecture Notes, School of Mathematical and

% Geospatial Sciences, RMIT University, March 2006.

% degree to radian conversion factor
d2r = 180/pi;

% compute flattening f and ellipsoid constant n
1/flat;
f/7(2-1);

=)
I

% powers n

n2 = n*n;
n3 = n2*n;
n4 = n3*n;

% coefficients in Helmert"s series expansion for meridian distance

b0 = 1+(9/4)*n2+(225/64)*n4;
b2 = (3/2)*n+(45/16)*n3;

ba = (1/2)*((15/8)*n2+(105/32)*n4);
b6 = (1/3)*((35/16)*n3);

b8 = (1/4)*((315/128)*n4);

% compute meridian distance
X = abs(dms2deg(lat)/d2r);
terml bO*x;

term2 b2*sin(2*x);
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term3 = b4*sin(4*x);
term4d = b6*sin(6*x);
term5 = b8*sin(8*x);
mdist = a*(1-n)*(1-n2)*(terml-term2+term3-termd+terms);

% print result to screen
fprintf("\n a = %12.4f",a);
fprintf("\n ¥ = 1/%13_.9f" ,flat);
[D,M,S] = DMS(x*d2r);
ifD==02&& lat < 0
fprintf("\nLatitude = -0 %2d %9.6F (D M S)",M,S);
else
fprintf("\nLatitude = %4d %2d %9.6Ff (D M S)*,D,M,S);
end
fprintf("\nMeridian dist = %15.6Ff" ,mdist);

fprintf("\n\n");

OUTPUT FROM MATLAB FUNCTION mdist.m

>> help mdist

MDIST(A,FLAT,LAT) Function computes the meridian distance on an
ellipsoid defined by semi-major axis (A) and denominator of flattening
(FLAT) from the equator to a point having latitude (LAT) in d.mmss format.
For example: mdist(6378137, 298.257222101, -37.48331234) will compute the
meridian distance for a point having latitude -37 degrees 48 minutes
33.1234 seconds on the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101)

>> mdist(6378137,298.257222101,-37.48331234)

6378137.0000
1/298.257222101

a
f
Latitude = 37 48 33.123400 (D M S)
Meridian dist = 4186320.340377

>>
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MATLAB FUNCTION latitude.m

fu

%
d2

%
f
n
n2

nction latitude(a,flat,mdist)

LATITUDE(A,FLAT,MDIST) Function computes the latitude of a point
on an ellipsoid defined by semi-major axis (A) and denominator of
flattening (FLAT) given the meridian distance (MDIST) from the
equator to the point.
For example: latitude(6378137,298.257222101,5540847.041561) should
return a latitude of 50 degrees 00 minutes 00 seconds for a meridian
distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, T =
1/298.257222101)

Function: Ilatitude(Q)
Usage: latitude(a,f,mdist)

Author: R.E.Deakin,
School of Mathematical & Geospatial Sciences, RMIT University
GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.
email: rod.deakin@rmit.edu.au
Version 1.0 23 March 2006

Functions required:
[D.M,S] = DMS(DecDeg)

Purpose:
Function latitude() will compute the latitude of a point on on an
ellipsoid defined by semi-major axis (a) and denominator of
flattening (flat) given meridian distance (m_dist) from the
equator to the point.

Variables:
a - semi-major axis of spheroid
d2r - degree to radian conversion factor 57.29577951...
T - flattening of ellipsoid
flat - denominator of flattening f = 1/flat
lat - latitude (degrees)
g - mean length of an arc of one radian of the meridian
mdist - meridian distance
n - eta, n = f/(2-F)
n2,n4, - powers of eta
s - sigma s = m_dist/g
s2,s3, - powers of sigma
Remarks:

For an ellipsoid defined by semi-major axis (a) and flattening (f) the
meridian distance (ndist) can be computed by series expansion
formulae (see function mdist.m). The reverse operation, given a
meridian distance on a defined ellipsoid to calculate the latitude,

can be achieved by series formulae published in THE AUSTRALIAN GEODETIC
DATUM Technical Manual Special Publication 10, National Mapping Council
of Australia, 1986 (section 4.4, page 24-25). The development of these

formulae are given in Lauf, G.B., 1983, GEODESY AND MAP PROJECTIONS,
Tafe Publications, Vic., pp-35-38.

This function is generally used to compute the "footpoint latitude”
which is the latitude for which the meridian distance is equal to the
y-coordinate divided by the central meridian scale factor, i.e.,
latitude for m_dist = y/kO.

degree to radian conversion factor
r = 180/pi;

calculate flatteninf f and ellipsoid constant n and powers of n
1/flat;

/7(2.0-1);

n*n;
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n3
n4

n2*n;
n3*n;

% calculate the mean length an arc of one radian on the meridian
g = a*(1-n)*(1-n2)*(1+9/4*n2+225/64*n4) ;

% calculate sigma (s) and powers of sigma

s = mdist/g;
s2 = 2.0*s;
s4 = 4.0*s;
s6 = 6.0*s;
s8 = 8.0*s;

% calculate the latitude (in radians)

lat = s + (3*n/2 - 27/32*n3)*sin(s2)...
(21/16*n2 - 55/32*n4)*sin(s4)...
(151/96*n3)*sin(s6) - - -
(1097/512*n4)*sin(s8);

+ 4 +

% convert latitude to degrees
lat = lat*d2r;

% print result to screen
fprintf("\n a = %12.4f",a);
fprintf("\n ¥ = 1/%13.9f",flat);
[D,M,S] = DMS(lat);
ifD==02¢&& lat < 0
fprintf("\nLatitude = -0 %2d %9.6F (D M S)",M,S);
else
fprintf("\nLatitude
end
fprintf("\nMeridian dist = %15.6F",mdist);

%4d %2d %9.6F (D M S)*,D,M,S);

fprintf("\n\n");

OUTPUT FROM MATLAB FUNCTION latitude.m

>> help latitude

LATITUDE(A,FLAT,MDIST) Function computes the latitude of a point
on an ellipsoid defined by semi-major axis (A) and denominator of
flattening (FLAT) given the meridian distance (MDIST) from the
equator to the point.
For example: latitude(6378137,298.257222101,5540847.041561) should
return a latitude of 50 degrees 00 minutes 00 seconds for a meridian
distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, T =
1/298.257222101)

>> latitude(6378137,298.257222101,4186320.340377)

6378137.0000
1/298.257222101

a

f
Latitude = 37 48 33.123400 (D M S)
Meridian dist = 4186320.340377

>>
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MATLAB FUNCTION latitude2.m

function latitude2(a,flat,mdist)

% LATITUDE2(A,FLAT,MDIST) Function computes the latitude of a point

% on an ellipsoid defined by semi-major axis (A) and denominator of

%  Fflattening (FLAT) given the meridian distance (MDIST) from the

%  equator to the point.

% For example: latitude(6378137,298.257222101,5540847.041561) should

% return a latitude of 50 degrees 00 minutes 00 seconds for a meridian
%  distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, f =
%  1/298.257222101)

% Function: latitude2()

% Usage: latitude2(a,f,mdist)

%

% Author: R.E.Deakin,

% School of Mathematical & Geospatial Sciences, RMIT University
% GPO Box 2476V, MELBOURNE, VIC 3001, AUSTRALIA.

% email: rod.deakin@rmit.edu.au

% Version 1.0 23 March 2006

%

% Functions required:

% [D,M,S] = DMS(DecDeg)

%

% Purpose:

% Function latitude2() will compute the latitude of a point on on an
% ellipsoid defined by semi-major axis (a) and denominator of

% flattening (flat) given meridian distance (mdist) from the
% equator to the point.

% Variables:

% a - semi-major axis of spheroid

% b0,bl,b2,... coefficients in Helmert"s formula

% corrn - correction term in Newton-Raphson iteration
% count - iteration number

% d2r - degree to radian conversion factor 57.29577951. ..
% F - a function of latitude (Helmert®s formula)
% Fdash - the derivative of F

% f - flattening of ellipsoid

% flat - denominator of flattening f = 1/flat

% lat - latitude

% mdist - meridian distance

% n - eta, n = f/(2-F)

% n2,n4, - powers of eta

% Remarks:

% For an ellipsoid defined by semi-major axis (a) and flattening (f) the
% meridian distance (mdist) can be computed by series expansion

% formulae (see function mdist.m). The reverse operation, given a

% meridian distance on a defined ellipsoid to calculate the latitude,

% can be achieved by using Newton"s lterative scheme.

% degree to radian conversion factor

d2r = 180/pi;

% calculate flattening f and ellipsoid constant n and powers of n
f = 1/flat;

n = f/(2.0-F);

n2 = n*n;

n3 = n2*n;

n4 = n3*n;

% coefficients in Helmert"s series expansion for meridian distance
b0 1+(9/4)*n2+(225/64)*n4;
b2 (3/2)*n+(45/16)*n3;
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b4
b6
b8

(1/2)*((15/8)*n2+(105/32)*n4) ;
(1/3)*((35/16)*n3);
(1/74)*((315/128)*n4) ;

% set the First approximation of the latitude and then Newton®"s iterative
% scheme where F is the function of latitude and Fdash is the derivative of
% the function F
lat mdist/a;
corrn 1;
count 0;
while (abs(corrn)>1le-10)
F = a*(1-n)*(1-n2)*(b0*lat. ..
- b2*sin(2*lat)...
+ bd*sin(4*lat)...
- b6*sin(6*lat)...
+ b8*sin(8*lat)) - mdist;
Fdash = a*(1-n)*(1-n2)*(bO. ..
- 2*b2*cos(2*lat)...
4*p4*cos(4*lat) ...
6*b6*cos(6*lat). ..
8*b8*cos(8*lat));

+ 1+

corrn = -F/Fdash;

lat = lat + corrn;

count = count+1;
end

% convert latitude to degrees
lat = lat*d2r;

% print result to screen
fprintf("\n a = %12._4f",a);
fprintf("\n ¥ = 1/%13.9F",flat);
[D,M,S] = DMS(lat);
ifD==02&& lat < 0

fprintf("\nLatitude = -0 %2d %9.6F (D M S)",M,S);
else

fprintf("\nLatitude = %4d %2d %9.6Ff (D M S)*,D,M,S);
end
fprintf("\nMeridian dist
fprintf("\niterations

%15.6F" ,mdist);
%d*",count);

fprintf("\n\n");

OUTPUT FROM MATLAB FUNCTION latitude2.m

>> help latitude2

LATITUDE2(A,FLAT,MDIST) Function computes the latitude of a point
on an ellipsoid defined by semi-major axis (A) and denominator of
flattening (FLAT) given the meridian distance (MDIST) from the
equator to the point.
For example: latitude(6378137,298.257222101,5540847.041561) should
return a latitude of 50 degrees 00 minutes 00 seconds for a meridian
distance of 5540847.041561m on the GRS80 ellipsoid (a = 6378137, T =
1/298.257222101)

>> latitude2(6378137,298.257222101,4186320.340377)

a = 6378137.0000

f = 1/298.257222101

Latitude = 37 48 33.123400 (D M S)
Meridian dist = 4186320.340377
iterations =3

>>
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MATLAB FUNCTIONS DMS.m and dms2deg.m

MATLAB functions mdist.m, latitude.m and latitude2.m call functions DMS.m and
dms2deg.m to convert decimal degrees to degrees, minutes and seconds (for printing) and

ddd.mmss format to decimal degrees. These functions are shown below.

function [D,M,S] = DMS(DecDeg)

% [D,M,S] = DMS(DecDeg) This function takes an angle in decimal degrees and returns
% Degrees, Minutes and Seconds

a abs(DecDeg) ;
ix(val);
ix((val-D)*60);
val-D-M/60)*3600;
cDeg<0)

- =Z0<
=h =h Il

oAl Il | ==

(D

@A

function DecDeg=dms2deg(DMS)
% DMS2DEG
% Function to convert from DDD.MMSS format to decimal degrees

abs(DMS) ;
Fix(X);
(x-D)*100;
Fix(xX);
(x-M)*100;
DecDeg = D + M/60 + S/3600;
i F(DMS<0)
DecDeg = -DecDeg;
end
return

n==X OX
o nmnn
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